Peer Effects in Product Adoption

Michael Bailey (Facebook)
Drew Johnston (NYU Stern)
Theresa Kuchler (NYU Stern, CEPR)
Johannes Stroebel (NYU Stern, NBER, CEPR)
Arlene Wong (Princeton)



Introduction

® Peer interactions important driver of product adoption decisions

® Specific nature of peer effects central to implications

® Extra demand or retiming of future demand?
® (Characteristics of influential individuals? Correlation with price sensitity?

® Peer effects concentrated on product purchased by friends, or positive or
negative spill-overs to competing products?

® This project: Explores these and other questions about peer effects in
the market for phone purchases



Approach in this paper

¢ Measurement Challenge: Need to observe both peers and
consumption or product adoption decisions in the same data set.

® Anonymized data from Facebook to measure peers as well as product
adoption from log-ins of mobile users.

¢ |dentification Challenge: Homophily — common shocks &
preferences — Correlated Behavior # peer effects.

® Exploiting quasi-random variation in peers purchasing phones induced by
(i) breaking/losing phones, (ii) contract renewals.



Data Description

® Anonymized network data from Facebook

® |[nformation on phones from mobile-active users

® Phone model & carrier registered when logging into mobile app

® |dentify switches to new phones

® Unit of observation: Person-week

® Pool across weeks 2016-19, 2016-20, 2016-21, and 2016-22

® Not close to major device release dates or shopping holidays



Research Design - Phone Purchase

e Baseline Research Questions: Are people more likely to buy any
new phone if their friends recently bought a new phone?

1(BuysPhone); + = [SFriendsBuyPhone;j _1 + vXi+ + €i.+

* l|dentification challenges (result of homophily):
® Correlated preferences

® (Correlated shocks

® Qur Approach: Find instruments for FriendsBuyPhone that
@ “Quasi-randomly” shifts probability of friends buying

@ Does not affect own probability of buying, except though peer effects.



Instrument 1: “Random Phone Loss”



Instrument 1: “Random Phone Loss”

® Use public posts on Facebook that signal “random” loss of phone.
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Instrument 1: “Random Phone Loss”

® |dentify public posts on Facebook that signal “random” loss of phone.

e Approach: Word Embeddings & Convolutional Neural Networks

® Neural network trained on about 15k hand-classified posts.



Instrument 1: “Random Phone Loss”

® |dentify public posts on Facebook that signal “random” loss of phone.

e Approach: Word Embeddings & Convolutional Neural Networks

® Neural network trained on about 15k hand-classified posts.

® Advantages relative to regular expression search

® Remove some false positives:

— "So...l dropped my phone in the toilet yesterday...!! Still works tho!!"

® Discover some false negatives:
— “R.1.P phone. You will be missed.”
— “uggh... water + phone = new phone time.

— “Long story short, my phone tried to light my house on fire last
night and you’ll have to reach me on here for a while.”

® |dentify ~330,000 posts about “random phone loss”



Instrument 1: “Random Phone Loss” — First Stage
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Instrument 2: “Contract Renewal” — First Stage

Switch Probability by Phone Age
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Instrument 2: “Contract Renewal” — First Stage

Switch Probability by Phone Age & Carrier
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® [nstrument for FriendsBuyPhone; ;+_1 with number of friends whose
phone is aged 720-735 days, and their characteristics

® E.g., Larger effects at Verizon and Sprint



Results - Phone Purchase
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Results - Phone Purchase

A

1(BuysPhone);: = [BFriendsBuyPhone;, 1+ vXit+ €t

Controls in X; ; include:

® User characteristics FE:
age bucket x gender x education X state x week

® Device characteristics FE:
device X carrier X phone age bucket x week

® Friends characteristics FE:
number of friends x friends switching phones in last 6 months x week

® |inear controls for
® |ndividual probability of buying a new phone

® Average purchase probability among friends
® Individual and friend posting behavior (random phone loss instrument)

® Number and behavior of friends at threshold (contract renewal)



Results - Phone Purchase
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Results - Phone Purchase

A

1(BuysPhone); ¢ BFriendsBuyPhone; ; 1 +vXit + €it

Second Stage

OoLS
DV: Prob Buys New Phone (%)
(1) (2) (3)
Broken Phone Contract Threshold
# of Friends Buying (t-1 and t) 0.034*** 0.041%*** 0.026**
(0.000) (0.005) (0.013)

Controls + Fixed Effects Y Y Y
Mean Dependent Variable 0.95 0.95 0.95
Number of Observations 335m 335m 335m

F-Statistic Instrument 339,156 55,592
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Results - Phone Purchase

A

BFriendsBuyPhone; ; 1 + vXit + €t

1(BuysPhone); ¢

Second Stage

OoLS
DV: Prob Buys New Phone (%)
(1) (2) (3)
Broken Phone Contract Threshold
# of Friends Buying (t-1 and t) 0.034*** 0.041%*** 0.026**
(0.000) (0.005) (0.013)
Controls + Fixed Effects Y Y Y
Mean Dependent Variable 0.95 0.95 0.95
Number of Observations 335m 335m 335m
F-Statistic Instrument 339,156 55,592

® 1 1 Friend Buys Phone —1 P(Buy Phone Next Week) by 0.04ppt

® Effect not driven by family members

® Not caused by advertising responding to instrument



Results - Phone Purchase

A

BFriendsBuyPhone; ; 1 + vXit + €t

1(BuysPhone); ¢

Second Stage

OoLS
DV: Prob Buys New Phone (%)
(1) (2) (3)
Broken Phone Contract Threshold
# of Friends Buying (t-1 and t) 0.034*** 0.041%*** 0.026**
(0.000) (0.005) (0.013)
Controls + Fixed Effects Y Y Y
Mean Dependent Variable 0.95 0.95 0.95
Number of Observations 335m 335m 335m
F-Statistic Instrument 339,156 55,592

® 1 1 Friend Buys Phone —1 P(Buy Phone Next Week) by 0.04ppt

® OLS = IV: Common shocks/preferences less problematic at short
horizon (conditional on controls)?

® Different instruments identified off of different individuals



Heterogeneity by Relationship Characteristics

Estimated LATE (%)

| |
Top 25 Not Top 25
Friendship Intensity

® (Closer friends are more influential

O
Iy
I
n
i

DA



Heterogeneity by Own Characteristics

® Having more friends: Each friends less close on average
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Not much heterogeneity in influencability



Heterogeneity by Friend Characteristics
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® Younger and less educated friends are more influential



Heterogeneity: Implications for Demand

® Peer effects — Aggregate demand more elastic than individual demand

e Key: Correlation between individual price elasticity and peer influence

® Estimate for groups of users

® |ndividual price elasticity:
Increase in purchases following price cut of iPhone 6 in September 2016

® Peer influence

— Correlation between price elasticity and peer influence: 0.45

® |Implications

® Deviation of aggregate and individual price elasticity large
® Peer effects lead to lower prices ceteris paribus

® Rationale for queuing



Timing of Peer Effect: New Demand or Pulling Forward?



Timing of Peer Effect: New Demand or Pulling Forward?
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® No evidence of a pre-trend, no evidence of reversal over 10 months.

® Implication for firm: Value of customer > Direct effect on profit
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Specific Phone Purchase - Motivation

® So far: Effect of friends purchasing any phone on own probability of
purchasing any phone.

® Next: Effect of friends purchasing a specific brand of phone (e.g.,
iPhone) on own probability of purchasing

@ That specific brand of phone

® A different phone by a competing manufacturer (e.g., Samsung Galaxy)



Specific Phone Purchase - Motivation

® So far: Effect of friends purchasing any phone on own probability of
purchasing any phone.

® Next: Effect of friends purchasing a specific brand of phone (e.g.,
iPhone) on own probability of purchasing

@ That specific brand of phone

® A different phone by a competing manufacturer (e.g., Samsung Galaxy)

® (Conceptually two effects:

@ Among those who are newly encouraged to buy, how many buy that
specific phone vs. another phone (potential for positive demand
spillover)

@ Among those who would have bought anyways, what is the effect on the
probability of buying that specific phone vs. another phone (potential
for negative demand spillover)



Specific Phone Purchase - Research Design

1(BuysX);.+ = P1FrBuysX; 1 + BaFrBuysY; t—1 +vXit + €it

¢ Common shocks + homophily: You are more likely to buy the same
phone as your friends, even in the absence of peer effects.

® Observation: Individuals differ in their (conditional) propensity to buy
particular phones, PropX

® Current iPhone users more likely to buy another iPhone

¢ |dentification ldea:

® |V: PropX among all people who post about randomly losing their
phone

® (Control for average of PropX among all friends



Specific Phone Purchase - Research Design
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Within and Across Brand Peer Effects

Cumulative Effects over 24 Weeks



Within and Across Brand Peer Effects

Cumulative Effects over 24 Weeks

Dependent Variable: Buys between t and t+24 (%)

iPhone Galaxy Other Any Phone
Friends buy iPhone 0.331*** -0.003 -0.127 % ** 0.207***
(0.024) (0.018) (0.017) (0.033)
Friends Buy Galaxy -0.196%** 0.670*** 0.403*** 0.877***
(0.043) (0.037) (0.036) (0.063)
Friends buy Other -0.470%** 0.081*** 1.438%** 1.049%**
(0.032) (0.030) (0.033) (0.051)
Controls + Fixed Effects Y Y Y Y
Mean Dependent Variable 11.74 6.58 5.91 24.23
Number of Observations 335m 335m 335m 335m
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Cumulative Effects over 24 Weeks

Dependent Variable: Buys between t and t+24 (%)

iPhone Galaxy Other Any Phone
Friends buy iPhone 0.331*** -0.003 -0.127 %** 0.207***
(0.024) (0.018) (0.017) (0.033)
Friends Buy Galaxy -0.196%** 0.670*** 0.403*** 0.877***
(0.043) (0.037) (0.036) (0.063)
Friends buy Other -0.470%** 0.081*** 1.438%** 1.049%**
(0.032) (0.030) (0.033) (0.051)
Controls + Fixed Effects Y Y Y Y
Mean Dependent Variable 11.74 6.58 5.91 24.23
Number of Observations 335m 335m 335m 335m

® [argest positive peer effects for same brand

® Same brand effect smallest for iPhone (social learning?)
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Within and Across Brand Peer Effects

Cumulative Effects over 24 Weeks

Dependent Variable: Buys between t and t+24 (%)

iPhone Galaxy Other Any Phone
Friends buy iPhone 0.331*** -0.003 -0.127 % ** 0.207***
(0.024) (0.018) (0.017) (0.033)
Friends Buy Galaxy -0.196%** 0.670*** 0.403*** 0.877***
(0.043) (0.037) (0.036) (0.063)
Friends buy Other -0.470%** 0.081*** 1.438%** 1.049%**
(0.032) (0.030) (0.033) (0.051)
Controls + Fixed Effects Y Y Y Y
Mean Dependent Variable 11.74 6.58 5.91 24.23
Number of Observations 335m 335m 335m 335m

® [osing customers to a rival firm hurts me due to

® | oss of future sales through positive peer effects from this person

® | oss of customers this person will bring to competitor who would have

otherwise bought my product



Within and Across Brand Peer Effects

Cumulative Effects over 24 Weeks

Dependent Variable: Buys between t and t+24 (%)

iPhone Galaxy Other Any Phone
Friends buy iPhone 0.331*** -0.003 -0.127 % ** 0.207***
(0.024) (0.018) (0.017) (0.033)
Friends Buy Galaxy -0.196%** 0.670*** 0.403*** 0.877***
(0.043) (0.037) (0.036) (0.063)
Friends buy Other -0.470%** 0.081*** 1.438%** 1.049%**
(0.032) (0.030) (0.033) (0.051)
Controls + Fixed Effects Y Y Y Y
Mean Dependent Variable 11.74 6.58 5.91 24.23
Number of Observations 335m 335m 335m 335m

® Positive across-brand spillovers for Android phones (social learning?)



Specific Phone Purchase - Model vs. Brand

® Next: Can we split up effect further? Effect of friends purchasing a
specific model of phone (e.g., iPhone 6s) on own probability of
purchasing

@ That specific model of phone (e.g., iPhone 6s)
® A different phone by the same manufacturer (e.g., iPhone 6)

© A different phone by a competing manufacturer (e.g., Samsung Galaxy)

® Empirical Challenge:

® Predicted propensities for iPhone and iPhone 6s are highly correlated
— No separate shifter for "friend buys iPhone 6s" and "friend buys iPhone"

® Can still study the OLS (with all appropriate caveats)



Within and Across Model Peer Effects

Same Model |
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® (Concentrated on same model, some positive same-brand spillovers



Within Model Peer Effects
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® Same model peer effects independent of price
® Same model peer effects larger for newer phones

— Social learning plays important role



Conclusion

® More likely to buy any new phone if friends recently bought new phone
® [argest effect on specific device, some positive within-brand spillovers
® Negative across-brand spillovers, but substantial new overall demand
® Most price elastic individuals are most influential

— Value of customers; competitive implications; price setting

— Understanding precise nature of peer effects important for implications

® Follow-on project to explore similarities across products



